

VIKRANT TYRE PLANT, MYSURU. KARNATAKA

WELCOME

TO

NATIONAL AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT 2024

Presenters

Name	Email ID	Phone Number
Damodar M	damodar.m@jkmail,com	9538872782
Nagendra BN	nagendra@jkmail.com	9986039012
Srinivasa R	Srinivas@jkmail.com	9632444311

Save Energy. Save Money. Save the Planet

1.PLANT / UNIT INTRODUCTION

VIKRANT TYRE PLANT, MYSURU

	3 Plants in Mysuru	Current Capacity (MT/Day)
	Bias Plant	185
	Radial Plant	195
5	OTR Plant	26
]} Karnataka	TOTAL	406 (~8,500 tyres/ day) 3000 Employees

VTP: SYSTEM CERTIFICATIONS (since early 1990s)

TYRE BUSINESS : JK TYRE & INDUSTRIES

- JK Tyre & Industries Ltd is a part of prestigious JK Organization
- Pioneered Radial Tyre revolution in India
- Technical Self-reliant.
- Capacity Initial capacity : 55 Tons/ Day (at Kankroli in 1977) Current capacity : > 2,000 Tons/ Day Annual Turnover : > Rs. 10,300 Crores
- 12 Plants -
- Mysuru (Karnataka) - 3 Plants: Kankroli (Rajasthan) - 1 Plant, Banmore (MP) Chennai - 1 Plant Laksar (Uttarakhand) - 3 Plants Mexico (Tornel) - 3 Plants

 - 1 Plant

VTP - SYSTEM CERTIFICATIONS (since early 1990s)

Si No	Certification	Plant 1 Bias	Plant 2 Radial	Plant 3 OTR		
1	ISO 9001:2015 / IATF 16949: 2016 QMS (Quality Mgmt) (1994)	~	~	 Image: A set of the set of the		
2	ISO 14001: 2015 EMS (Environment Mgmt.) (1999)	~	~	~		
3	ISO 45001:2018 (Occupational Health & Safety) (2019)	~	~	~		
4	ISO 50001:2018 EnMS (Energy Mgmt.) (2013)	~	~	~		
5	SA 8000 : 2014 (Social Accountability) (2016)	~	~	~		
6	ISO 27001:2013 (Information Security Mgmt.) (2016)	~	~	✓		
7	ISO/IEC 17025:2005 - NABL Accreditation (for Laboratory) (2016)	~	~	NA		
8	IMEA - Gold Award 2010 (Participated in 2006 & 2007 and won Silve	er award)				
9	TPM Certification (Excellence) JIPM, Japan (2010)					
10	CII Sohrabji Godrej Green Business Centre – GreenCo PLANTINUM Award (2018)					
11	TPM Certification (Consistency) JIPM, Japan (2016)					

Mysuru

ENERGY POLICY

VIKRANT

SUSTAINABILITY POLICY

JK Tyre & Industries Ltd commits itself to minimising its impact on our environment through

- Providing a safe and pleasant workplace free from Hazard & Risk;
- Create environmentally sustainable culture, where responsibility is assigned and understood;
- Being an Socially & environmentally responsible neighbour in our community;
- Conserving natural resources by adopting reduce, reusing and recycle concept;
- Reduce Energy consumption by ensuring the responsible use of energy throughout the organisation;
- Increase the share of Renewable energy throughout the organisation
- Participating in efforts to improve environmental protection and understanding
- Taking steps to improve environmental performance continually;
- Conducting rigorous audits, evaluations, and self-assessments of the implementation of this policy;
- Working with suppliers who promote best environmental & sustainable practices
- Enhancing awareness among our employees, volunteers, and users – educating and motivating them to act in an environmentally responsible manner.

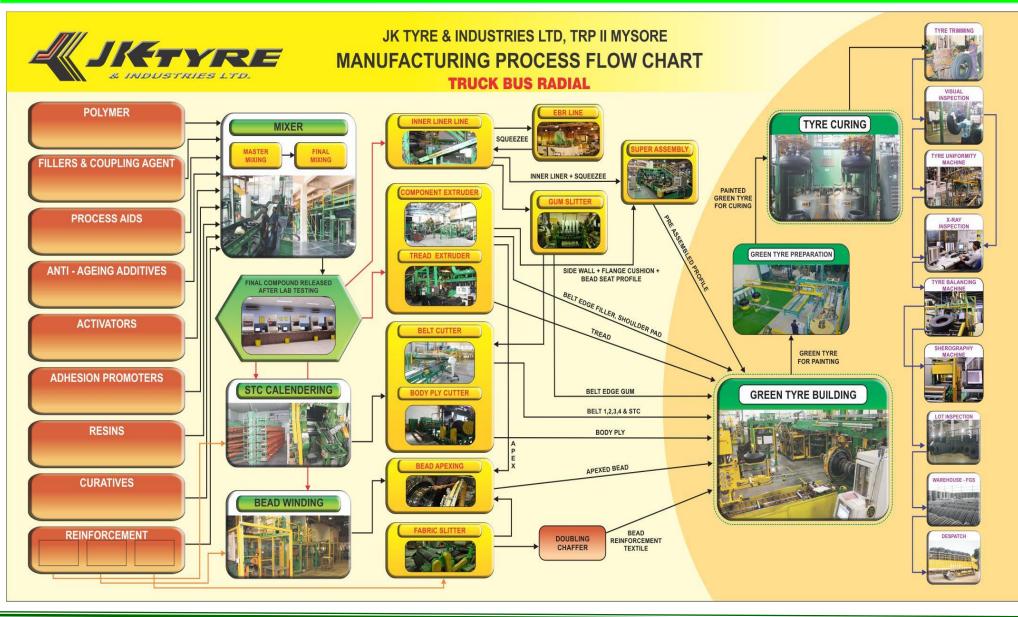
+ the payoup

Authorised and Approved by Arun K. Bajoria Director & President (International Operations)

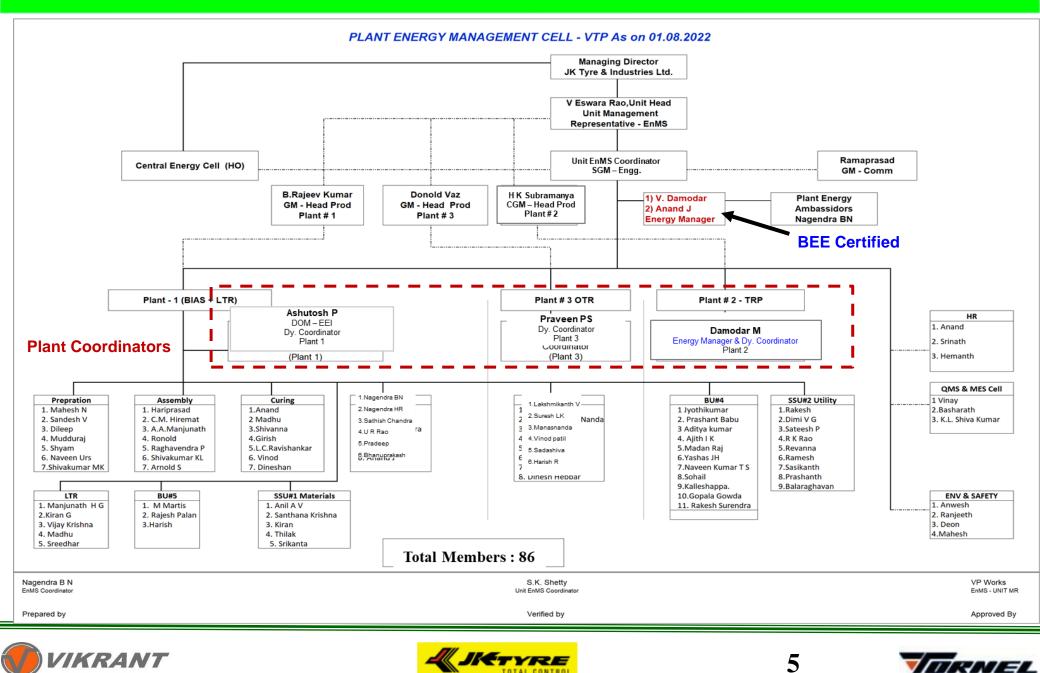
ENERGY POLICY

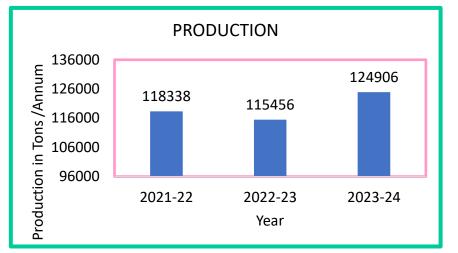
We at JK Tyre are committed to design, manufacture and distribute our products & services in an energy efficient manner to meet our mission statement of becoming a green company. We will continually improve our energy performance for sustainable growth by:

- Complying with all applicable legal and other requirements related to our energy use, consumption and efficiency.
- Taking measure in Energy Management System by being proactive, innovative and cost effective including procurement of energy efficient product & services.
- Enhancing effectiveness of energy management system by ensuring the availability of information and necessary resources to achieve the objectives and targets.
- Integrating energy policy into our business planning, decision making and performance review at appropriate level.

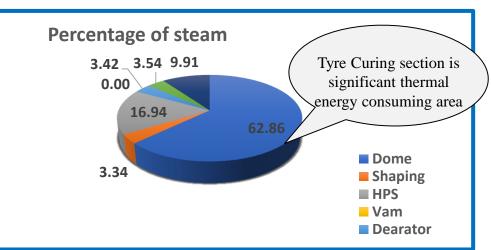

We commit to communicate this policy to all our employees, persons working for and on our behalf and also will make it available to all interested parties on request.

2.MANUFACTIRUNG PROCESS

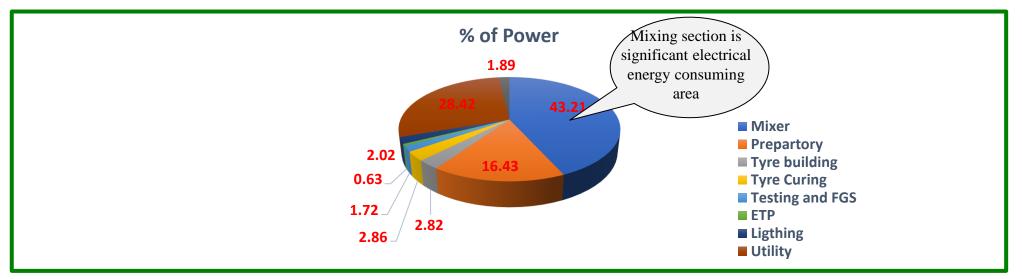




ENERGY MANAGEMENT TEAM

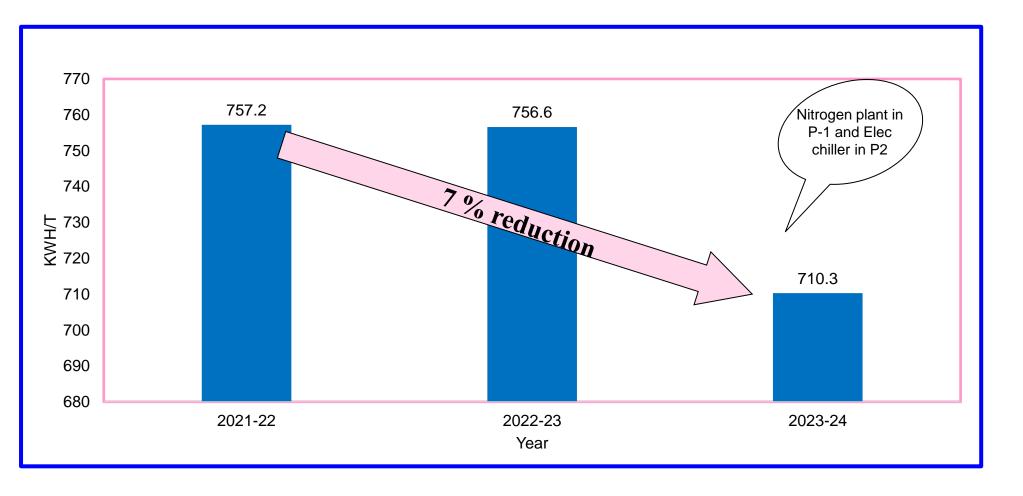


3. SPECIFIC ENERGY CONSUMPTION

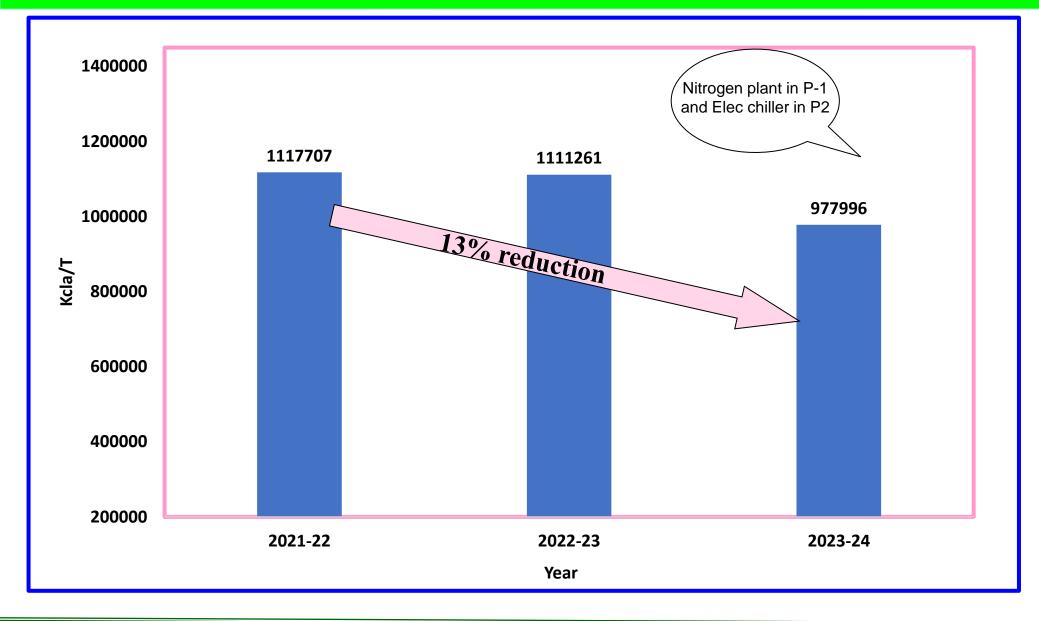

BASIC DATA - PRODUCTION

BASIC DATA – STEAM BALANCE

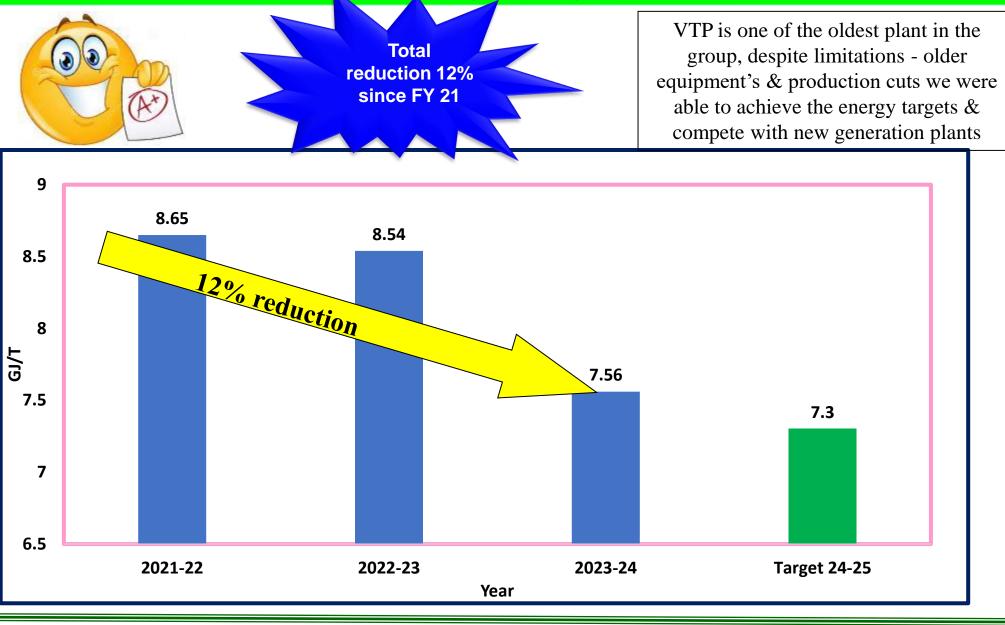
BASIC DATA – POWER BALANCE



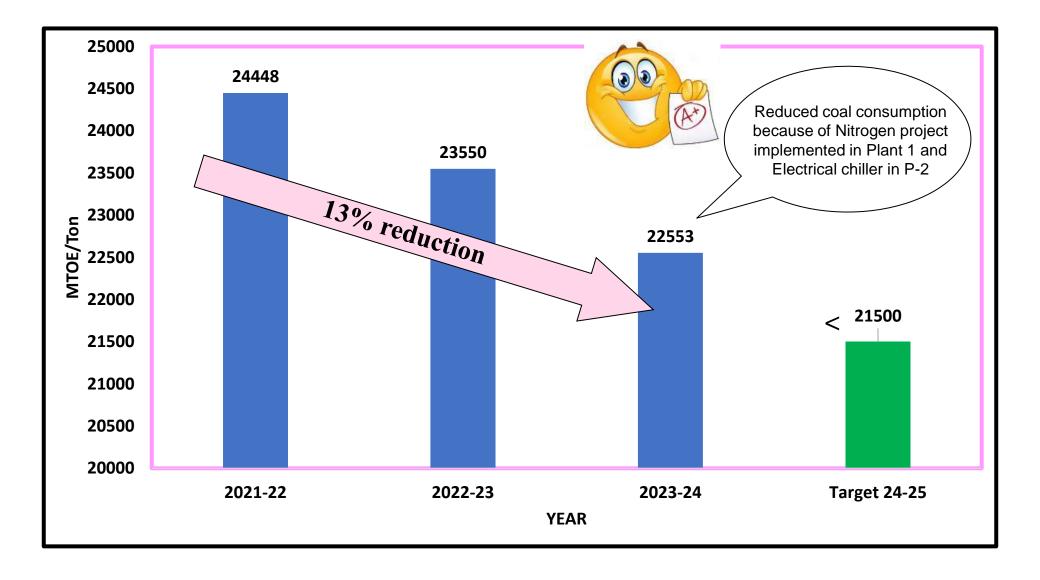
ENERGY CONSUMPTION - POWER (Kwh/Ton)



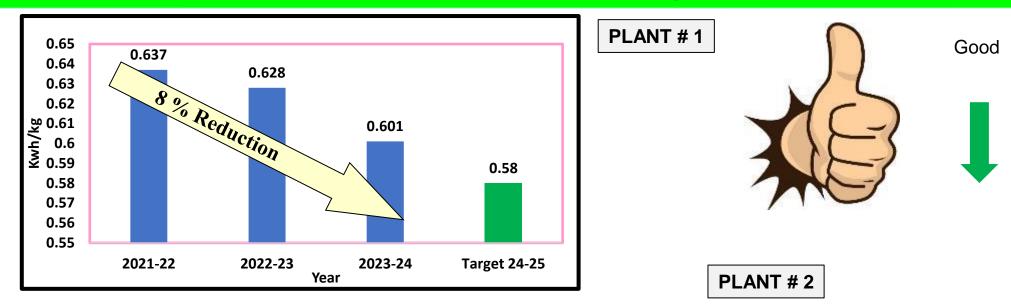
ENERGY CONSUMPTION – THERMAL (Kcal/Ton)

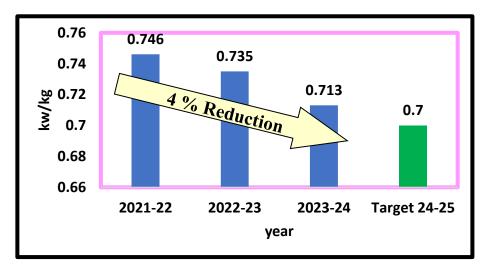


OVERALL ENERGY CONSUMPTION (GJ/TON)



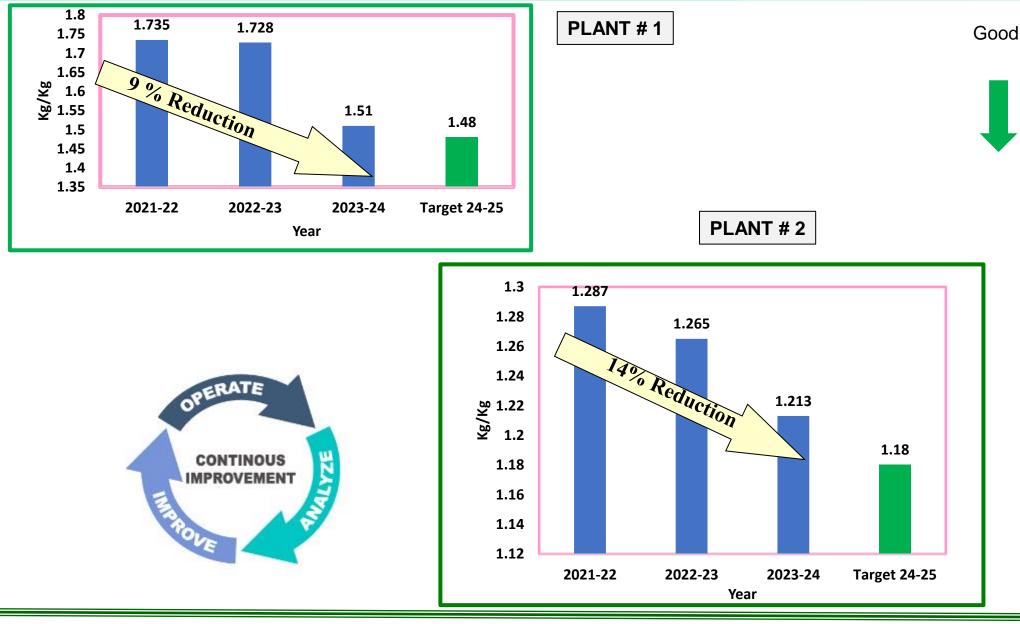
THERMAL ENERGY CONSUMPTION (MTOE)



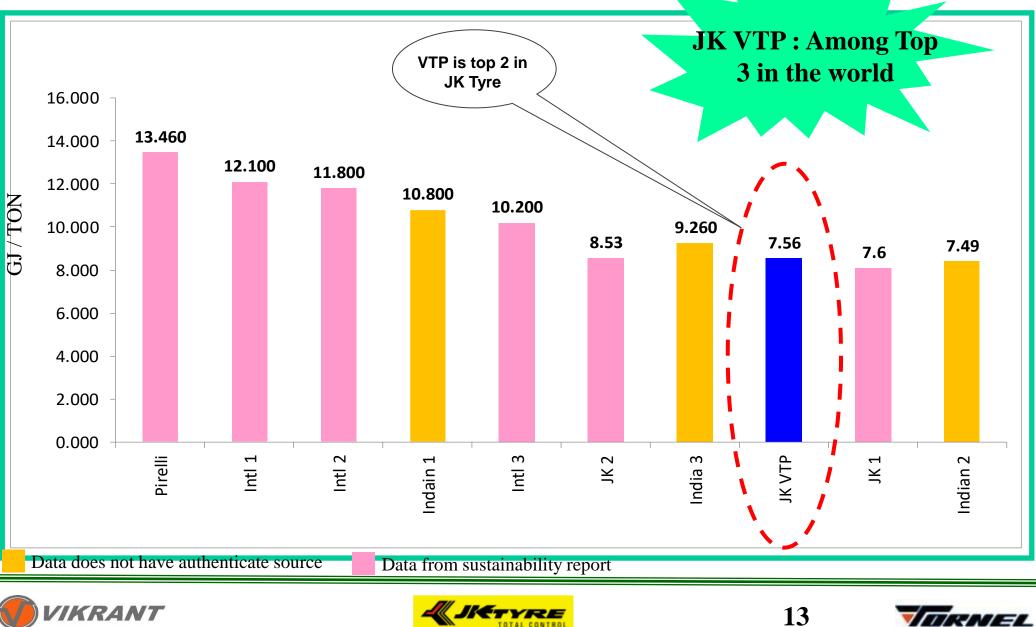


SPECIFIC ENERGY CONSUMPTION - POWER (Kwh/Kg)

Achieved energy targets despite low production & other challenges. This is the clear impact / result of implementing the energy conservation projects



SPECIFIC ENERGY CONSUMPTION - STEAM(Kg/Kg)



INFORMATION ON COMPETITORS, NATIONAL & GLOBAL BENCHMARK

ENERGY SAVING PROJECTS IMPLEMENTED : 2021-22

Project Sr	Brief Description of project	Approved	Saving per yea	ar (Rs. In Lacs)	Energy Sav	ing Planned
no	Brief Description of project	Amount in Lacs	Planned Yearly	Achieved	Qty	UOM
	Nitrogen conversion in place Hot Water in	0.40	470	100	1750000	KWH
1	bias curing (savings in coal & power)	242	170	189	7000	MT
2	For Ice blasting HP air main inlet line and SAV areaHP air mian line 50NB air regulator to be fix to control more air prerssure loss and to avoide inflation error during ice blasting	1.5	3	4	48500	KWH
3	Engg_VFD for the 110 kw hydrulic pump	5.5	6	6.18	77256	KWH
4	Installation of Individual energy meters to Auxiliary equipment's in Mixers & utility section for micro level monitoring of power consumption on daily basis & necessary optimization for energy savings	45	25	30	40427	kwh
5	Improvement of overall Plant Power factor from 0.97 to 0.99 and reduce the distribution Loss by installation of2X 500KVAr APFC panel for PCC-1, 2500KVA transformer	24	15	15.8	74460	KWH
6	Improvement of overall Plant Power factor from 0.96 to 0.98 and reduce the distribution Loss by installation of 500KVAr APFC panel for PCC-2, 1250KVA transformer	8.6	15	14.5	193333	Kwh
/	SAV & Curing area AHU retrofit with EC fans	65	35	33	440000	Kwh
0	Recovery of boiler CBD heat to increase boiler feed temperature	8	10	9.76	177.5	МТ

ENERGY SAVING PROJECTS IMPLEMENTED : 2022-23

SL No	Short Description of Capex Need	Quantiy	Equipment/ Area involved	Champion/ Driver	Category	Time to Complete	Amount Required (Rs. In Lacs)	Saving per year (Rs. In Lacs)	Simple Payback (Years)	Savings /day	unit	Saving /annum	Saving in Kcal
1	Power Saving by Replacement of Old IE2 Rewinded Motors with IE3 Energy Efficient Motors	4	Dip Unit & Banbury	Ashutosh/ Dilip	Electrical	3 months	4	4.4	0.91	200	kwhh	71000	61060000
	Power Saving by Replacement of Old Mill Motor 184 KW motor drawing more no load current due rewinded many times (Cracker Mill)	1	4 Roll Calender	Ashutosh/ Dilip	Electrical	3 months	8.5	5.5	1.55	250	kwhh	88750	76325000
	Power Saving by replacement of Old IE2 Rewinded Motors replace with IE3 Eerggy efficient motors at Heat Exchanger (Cool Cycle Pump- process Supply- 2Motors & Hot Water Supply -2 Motor))	4	Utility	Ashutosh/ Nagendra	Electrical	4 months	7.2	5.5	1.31	250	kwhh	88750	76325000
	Power Saving by provision of VFD for 3 Roll Calander Feed Mill	1	3 Roll Calendar	Ashutosh/ Hiremat	Electrical	3 months	7.5	4.8	1.55	220	kwhh	78100	67166000
5	Power Saving by provision of VFD for Banbury Mixer # 5 Dump Mills	1	Banbury	Ashutosh/ dilip	Electrical	3 months	10.0	5.5	1.82	250	kwhh	88750	76325000
6	Improvement of overall Plant Power factor from 0.97 to 0.99 and reduce the distribution Loss by installation of2X 500KVAr APFC panel for PCC-1, 2500KVA transformer	2	TS-2 SUBSTATION , PCC-1 PANEL	JK/RKG	Electrical	3 months	24	15.8	1.52	600.0	kwhh	213000	183180000
7	Air consumption reduction in Mixer-6 Dust collector & carbon Day bin purging system through introduction of flow meter & PLC control	1	BANBURY	JK/RKG	utility	4 months	5	2.63	1.90	100	kwhh	35500	30530000
8	Engg_VFD for the 110 kw hydrulic pump	1	Utility	AP/SP	Electrical	6 months	6.5	5.52	1.18	200	kwhh	71000	61060000
	For Ice blasting HP air main inlet line and SAV areaHP air mian line 50NB air regulator to be fix to control more air prerssure loss and to avoide inflation error during ice blasting	1	Utilty	SRR/GNS	utility	4 Month	1.5	2.49	0.60	100	kwhh	35500	30530000
10	Hot water conversion to Nitrogen plant	1	Utilty	Ashutosh/ Nagendra	utility	12 months	341.60	190.00	1.80	10	Ton of coal	3050000	10675000000

ENERGY SAVING PROJECTS IMPLEMENTED : 2023-24

SL No	Short description of capax Need	Quantity	Equipment/ Area involved	Champion/ Driver	Category	Amount Required (Rs. In	Saving per year (Rs. In Lacs)	Simple Payback in yers	Savings		Saving		Savings in	_	Pay bck in
1	Existing Hydraulic pump replacement with	1	Utility	BNN	Electrical	Lacs) 3.0	2.5	1.2	/day 100.0	unit	/annum	Saving in Kcal	Mkcal	TOE	Month
	energy efficient pump.		Ounty	BINN	Liceurear	0.0	2.0	1.2	100.0	KW	35500	30530000	30.53	3.053	14.7
2	Replacement of Existing water plant inefficient pumps to energy efficient pump.	6	Utility	BNN	Electrical	12.0	8.4	1.4	400.0	кw	142000	122120000	122.12	12.212	17.1
3	Rerouting /Sizing Compressed air lines and headers isolation valves to eliminate independent sections during partial or low load operations.	1	Utility	BNN	Electrical	5.0	2.8	1.8	125	кw	44375	38162500	38.1625	3.81625	21.1
4	Replacement of old Mill 184 KW slip ring motor drawing more no load current due rewinded many times	1	Dual Mill #1	Ashutosh/ Dilip	HIGH	9.5	7.7	1.2	350	кw	124250	106855000	106.855	10.6855	14.8
5	Replacement of old Mill 200 KW slip ring motor drawing more no load current due rewinded many times	1	Dual 84 inch Cracker mill	Ashutosh/ Dilip	HIGH	9.5	6.6	1.4	300	кw	106500	91590000	91.59	9.159	17.3
6	75 KW Energy efficient pump with VFD inplace of IE2 110 KW motor	1	Water Plant	Ashutosh/ Nagendra	HIGH	12.5	8.8	1.4	400	кW	142000	122120000	122.12	12.212	17.1
7	Old IE2 Rewinded 45 KW Motors replace with IE3 Eerggy efficient motors at water plant	2	Utility & Santosh Calender	Ashutosh/ Nagendra	HIGH	5.5	3.3	1.7	150	кw	53250	45795000	45.795	4.5795	20.0
8	SAV AHU 3 and Fisher cutter fan to be replaced with energy efficient fan	2	Utilty	Satish	Electrical	14.00	7.36	1.90	2288	кw	812240	698526400	698.5264	69.85264	22.8
9	Replacing Preparation area blower fans to Energy Efficient fans	2	Utilty	Revanna	Electrical	7.00	3.91	1.79	155	кW	55025	47321500	47.3215	4.73215	21.5
10	Platen press top insulation and steam line insulation	1lot	Curing	Satish	Thermal	3.50	15.40	0.23	2	TONS OF STEAM	710	555652173.9	555.652174	55.56522	2.7
11	Replacing 300 TR VAM to350 TR VFD operated Electrical chiller	1	Chiller	Damodar	Thermal	90.00	61.77	1.46	30	TONS OF STEAM	10650	8334782609	8334.78261	833.4783	17.5
12	Installing VFD for 160KW LP air compressor	1	Compressor	GG/Srinivas	Power	14.00	7.26	1.93	288	кw	102240	87926400	87.9264	8.79264	23.1
13	Installation of 37 kw pump in Hydrualic tank to reduce the pumping power	1	Pump	Damodar	Power	7.00	10.08	0.69	400	кW	142000	122120000	122.12	12.212	8.3
14	Instalation of 37 KW VFD in VAM cooling tower pump to reduce the pumping ppower	1	Pump	Shashikumar	Power	5.00	3.15	1.59	125	кW	44375	38162500	38.1625	3.81625	19.0
15	37kw VFD for curing Air washer system	1	Utilty	GG/Srinivas	Power	5.00	3.63	1.38	144	KW	51120	43963200	43.9632	4.39632	16.5
16	Banbury Hot Well Pump Optimization with VFD & Piping Modification	1	Mixer	JK/RKG/RK	Electrical	6.50	6.65	0.98	264	кw	93720	80599200	80.5992	8.05992	11.7
17	100KVAR Capacitor Panel for MCC#3	1	Utility	Praveen	Proven	2.90	2.60	1.12	100	KW	35500	30530000	30.53	3.053	13.4
18	Installation of Energy efficient motor with Pump for Utilities to reduce Dead Load	1	HYDRAULIC	Suresh/ Praveen	Proven	5.30	5.20	1.02	200	кW	71000	61060000	61.06	6.106	12.2
19	Coal boiler conversion into Biomass fuel	1	utility	Ashutosh/ Nagendra	Proven	1165.00	468.00	2.49	4400 15	kw T of coal	1342000 4575	1154120000 16012500000	1154.12 16012.5	115.412 1601.25	29.9
20	Hot water conversion to Nitrogen plant	1	Utilty	Ashutosh/ Nagendra	Proven	650.00	341.60	1.90	16	T of coal	4373	17080000000	17080	1708	22.83

ENERGY SAVING PROJECTED IN 2024-25

SL No	Short description of capex Need	Quantity	Equipment/ Area	Champion/ Driver	Category	Time to	Amount Require	Saving per year (Rs. In	Simple Payback						
		quantity	involved	enampion priver	Gulogory	Complete	d (Rs. In Lacs)	Lacs)	(Years)	Savings /day	unit	Saving /annum	Saving in Kcal	Saving in Mkcal	Savings in TOE
	Replacement of old Mill 110 KW slip	1	3 roll	Ashutosh/Dilip		6 months	8	4.4	1.82	200.00	KW	•			
1	ring motor drawing more no load		calendar		Electrical										
	current due rewinded many times		Mill									71000	61060000	61.06	6.11
2	VFD for Banbury Mixer #5 Dump Mill	1	Banbury	Ashutosh/dilip	Electrical	8 months	9.0	6.6	1.37	300.00	KW	106500	91590000	91.59	9.16
_	Replacement of Thermax Boiler ID	1	Thermax	BNN/Ashurosh		8 months	5.0	2.6	1.90	120.00	KW				
3	fan motor -110 KW with IE3 motor		Boiler		Electrical							42600	36636000	36.636	3.66
4	VFD for Banbury Mixer #3 Dump Mill	1	Banbury	Ashutosh/dilip	Electrical	8 months	14.0	7.7	1.82	350.00	KW				
4												124250	106855000	106.855	10.69
	30 TPH Boiler Fuel feeding system	1	Thermax	BNN		6 months	12.0	7.7	1.56	350.00	KW				
	conveyors existing higher rating		Boiler												
5	motors and higher size gear boxes-				Electrical										
	Gear box resizing with Energy														
	efficient motors -Phase 1											124250	106855000	106.855	10.69
_	In water treatment plant, Service water			Damodar							KW				
6	and clarifier 15 KW pump to be replaced with7.5 kw Energy Efficient pumps	2	Utilty	/Sathish /Ramesh	Utility	3 months	2.60	3.36	0.77	120					
											TONG OF	42600	36636000	36.636	3.66
7	Modification of Thermax Boiler for Bio mass feeding	1	Utilty	Damodar /Sathish /Ramesh	Utility	10 months	90.00	56.80	1.58	2	TONS OF COAL	710	2485000000	2485	248.50
8	SAV AHU 2 and 4 fan to be replaced with energy efficient fan	2	Utilty	Damodar /Sathish /Ramesh	Utility	8 Months	14.00	8.06	1.74	288	KW	102240	87926400	87.9264	8.79
9	Replacement of 75kw ejector pump to 30Kw single stage pump	1	Utilty	Damodar /Sathish /Ramesh	Utility	4 months	5.00	5.60	0.89	200	KW	71000	61060000	61.06	6.11
				Madanrai/Gopal/							TONS				
9	Conversion of Dome to Platen	8	Curing	Damodar	curing	12 months	300.00	36.81	8.15	1.25	OF				
											COAL	444.5	1600278261	1600.27826	160.03

OVERALL IMPACT OF ENERGY SAVING PROJECTS

Power (Lakh kWh)

Lac kW /Annum MT coal /Annum 12000.0 **Reduced coal/Power** 70 consumption as a 10000.0 60 58.48 result of Nitrogen Lackw/Annum MT /Annum project implemented 50 8000.0 in Plant 1 and 40 33.3 **Electrical chiller in P-2** 6000.0 30 4000.0 25.18 5.7 20 11.78 2000.0 7.7 11.78 126.7 10 0.0 126.70 2020-21 2020-21 2021-22 2022-23 2023-24 Axis Title Cummulative Lac Kw MT

Thermal	(Coal	in	MT)	
---------	-------	----	-----	--

456.9

2021-22

583.6

Year

	No of Energy	Amount		Thermal	Total		
Year	Projects	Invested	electrical saving	Saving	Savings	Pack back	
					INR		
		Millions	Mkw	Mkcal	millions	Years	Remarks
2020-21	12	13.8	1.178	456	13.6	1.01	Nitrogen project in Plant -2
2021-22	8	16.2	0.57	1645	6.7	2.42	Dome to Platen / Return condensate- Plant-2
2022-23	10	19.42	0.77	777	8.9	2.18	Dome to Platen - Platen 2
							Nitrogen Plant -P1, Boiler -P1and 373 TR
2023-24	21	212	3.33	41982	24.2	8.76	Chiller in plant -2
							Projected savings - Dome to platen in P2,
2024-25	9	45.9	0.68	4085	14	3.28	biomass conversion in Boiler in Plant -2

11661.7

2023-24

215.8_{799.4}

2022-23

Cummulative

General procedure for financial resources allocation for projects

- Identification of Significant energy use
- Monitoring of EnPI for identified significant use
- Benchmark / target for identified significant energy use
- Energy gap analysis & energy loss mapping
- Identification of energy projects / kaizens to bridge gap
- Prepare Energy Management program with savings & Payback information
- Submission of energy projects to HO for budget approval (> Rs 2 Lacs investment)
- Review of projects, approval and allocation of resources by Management
- Implementation of projects at site
- Post Implementation savings audit and reviews
- Monthly energy project status review by Unit Head & HO

Kaizen Title: Erection & Commission of Bio Mass operated 30 TPH Boiler .

Problem or present status

✤ VTP plant is heavily reliant on coal, with a consumption rate of 88%, which results in high CO2 emissions and increased operational costs. Despite efforts to integrate renewable energy sources, biomass usage is limited to only 12%.

This dependence on coal not only impacts our environmental footprint but also puts us at a competitive disadvantage compared to our sister plants BTP and CTP, which have achieved renewable energy consumption rates of 70% and 40%, respectively.

IMPACT ON PPROBLEM

- Specific Coal consumption is high
- Co2 Generation more & Impact on Environment
- Operating cost / fuel cost more

IDEA

 We plan to relocate and modify a 30 TPH Thermax traveling grate high-pressure boiler from our Laksar plant to VTP #1 Mysore plant."

Investment & Savings

- Total investment
- : 11 Crore : 35 lacks
- Savings per mothROI
- : Less Than 3 years

Standardization :

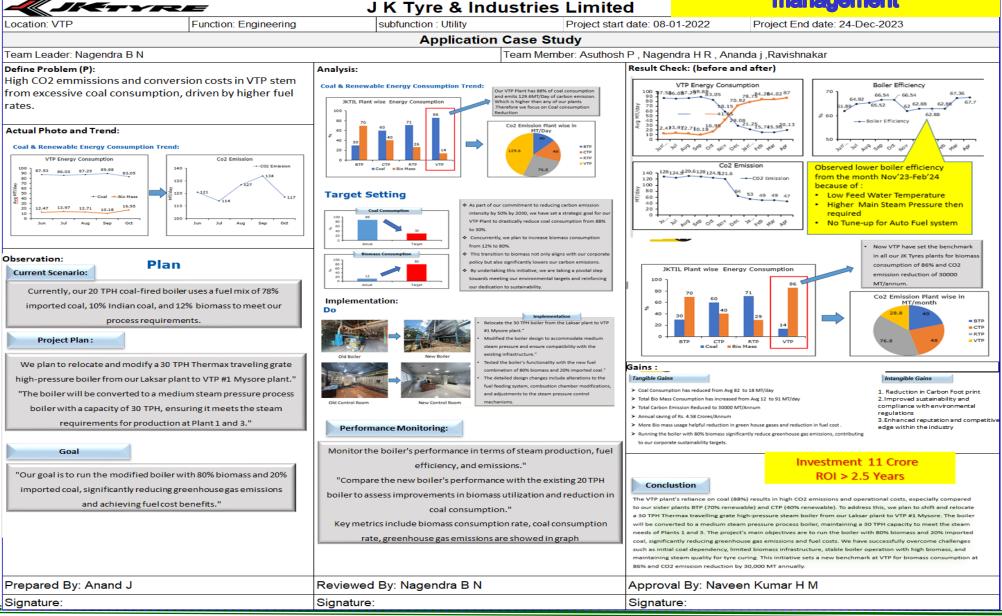
• SOP, Drawing & design documents

ROOT CAUSE IDENTIFICATION

Why # 1	CO2 Generation more & Impact on Environment & fuel cost high
Why # 2	Biomass usage is limited to only 12%. And coal usage 88 % so cost high
Why # 3	Existing IJT Boiler Not withstand more with Bio mass
Why # 4	Boiler Not Design for more Bio mass usage .

IJT Boiler design for coal

Thermax Boiler design for Bio mass



6.INNOVATIVE PROJECT IMPLEMENTED

1. Energy savings Change management

TRANET

Kaizen Title: Nitrogen curing system

Problem or present status

curing was carried out with hot water circulation in all Bias & LTR presses. Hot water generation requires - HW Pressure - 28 KSC, 24 KSC & 20 KSC and temp - 168°C. Steam consumption 80 MT/day and power consumption - 5573 Units/day. Being a Green company, in order to reduce the carbon footprint, proposed to go for Nitrogen curing. Nitrogen curing is an advanced technology in Tyre curing, offering many benefits including improved productivity, enhanced bladder life, quality of product and reduction in energy consumption(Power, Steam and Water).

IMPACT ON PPROBLEM

- Specific power consumption is high
- Specific Steam consumption is High

IDEA

Nitrogen curing implementation

Investment & Savings

- Total investment
- Net savings in Rs/month
- ROI
- : 15 lacs : 1.5 Years

: 2.4 crores

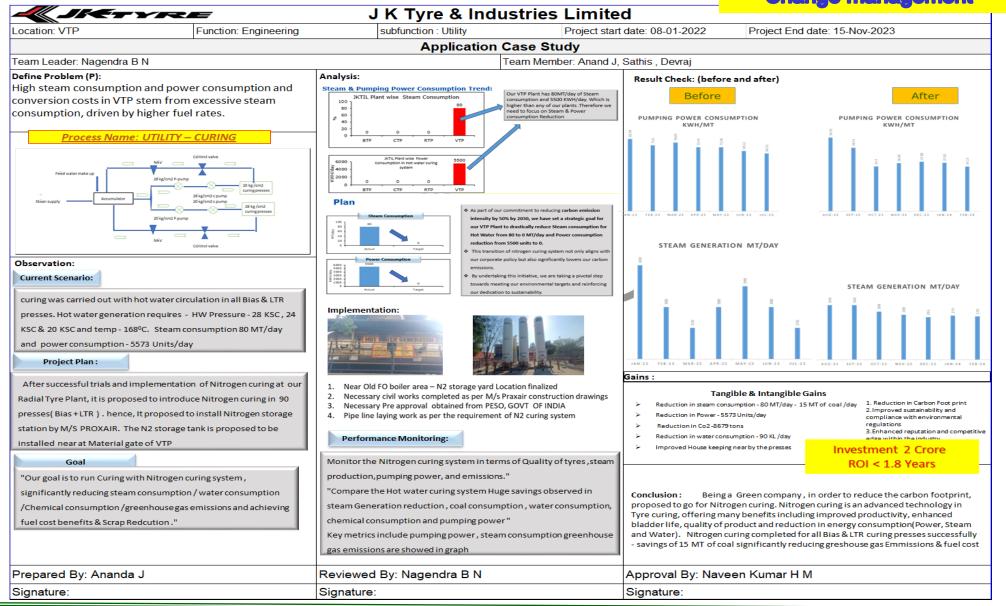
Standardization :

SOP,FMEA & design documents

ROOT CAUSE IDENTIFICATION

Why # 1	Steam consumption & power consumption more
Why # 2	Hot water generation requires steam and power
Why # 3	Hot water curing system

Nitrogen curing system



6.INNOVATIVE PROJECT IMPLEMENTED

2. Energy savings through Change management

Kaizen Title: Energy saving through replacement of least energy efficient VAM chiller to Electrical dual compressor water cooled chiller

Problem or present status

The Tyre process is have High Capacity Mixers, Heavy air consumption Testing machine and TBM machine, Boilers and steam supply for curing, HVAC for TBM. These energy utilization and specific energy consumption was high and was a tuff task to reduce. Since the Mission vision target was 50% reduction in CO 2 emission, reduction in Scope 1 and 2 was a challenge.

IMPACT ON PPROBLEM

Specific Energy High

IDEA

- Coal consumption is more
- Water specific is more

cooled chiller Investment & Savings

Net savings in Rs

ROOT CAUSE IDENTIFICATION

Why # 1	Specific energy consumption higher side
Why # 2	Coal consumption not matching the target
Why # 3	Steam consumption is more
Why # 4	VAM steam consumption is high due to inefficient VAM

BEFORE

AFTER

Standardization :

Investment

ROI

SOP,FMEA & design documents

Replacement of least energy efficient VAM

chiller to Electrical dual compressor water

: 90 lacs

: 0.8 years

: 18 lac /month

Horizontal deployment

6.INNOVATIVE PROJECT IMPLEMENTED

Project No

06/RTP1/2024

Total

(S+Q+C+E+En)

18

18

28

22

20

VAM Chiller System wa

consider as top priority

S Q P C En I

5 5 4 5 5 4

4 4 3 3 5 3

3 3 4 4 3

5 4 2 3 3

4 4 3 3 3 1 Curing

Operators

Steam drain

system

Gasket quality

Trap Passing

Steam Line

Trap Passing

·Loading

sequence

Method

Insulation

Blow

down SOP

Unskilled

Boiler

Operators

Steam Pipe

line quality

Why-1

Why-2

Why-3

Why-4

Whv-5

efficient Chiller

a 3 Jun 3

11 11 11 1

ACTIVITES

DEFINE Ital

ELSURE **Ita**

21.44

MPROVE ta) Dana

CONTROL ta.

Parre

Pared

lta'

Pared

Hose leak

Material

3 Energy savings through Equipment Case Study / Improvement Projects- Specific Coal consumption reduction UTQM.00.FR.02 Rev:00 Jan-23 Listed down al Analysis: Action/Countermeasure (D) ossible causes Sub wrt. to 4M UTILITY CHILLER Reduced total steam specific consumption Method function Machine SCC March-24 Category: Unskilled VAM system

insulation

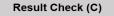
efficiency

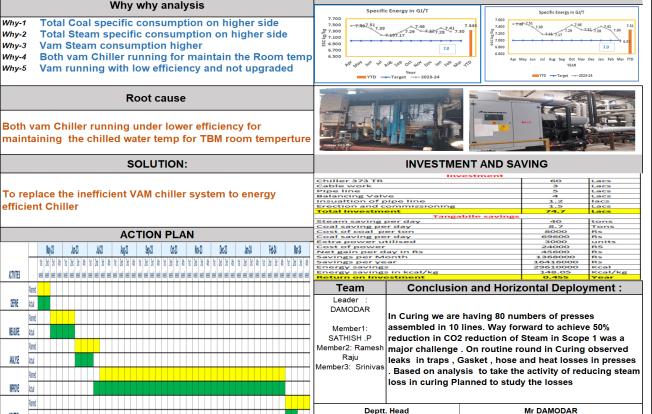
Steam

loss in

system

Cure cycle


time


Steam Temp

variation

VAM

- Elimination of process chilled water temp deviations.
- Reduction in energy in kacl /kg of product.
- Specific coal consumption reduced.
- Water saving of 385 kl per year achieved.
- Reduction of CO2 emission

Conversion cost will be more

Water consumption is more

VAM Chiller & Curing

- Energy in kcal /kg will be more
- SPC is more

UTILITY

/BOILER

TBR

Extrusion

Define Problem (P)

Project start date

Effect ;

Locatio

RTP

Mav-23

Problem Definition

1.Energy in kcal /kg will be more

2.Co2 emission on higher side

Total Specific Coal consumption on higher side

Function

End Date

Actual Photo and Trend:

Total Specific Coal Consumption trend

Key Problems

VAM Chiller Steam System

Dome Steam System

Boiler Blow Down

HPS Steam System

Observation:

Shaping Steam System

Flow chart:

TBR

Inspection & Testing

TBR Warehousing

Kaizen Title: Electrical Power saving through switching off one of the two cool water pumps in Heat Exchanger

Problem or present status

Out of 92 TCPs only 21 TCPs (Non Truck size) required cold water pressure in the process, Remaining 71 TCPs does not require Cooling water, hence for venturi system for these presses required only around 8 kg/cm². 2 Numbers of cooling water pumps were on use, with 2900 RPM and 75 KW capacity consuming power to the extent of 2300 units / day,

IMPACT ON PPROBLEM

- Specific power consumption High
- High energy loss
- Water loss

IDEA

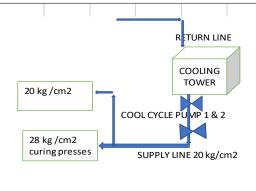
 Electrical Power saving through switching off one of the two cool water pumps in Heat Exchanger

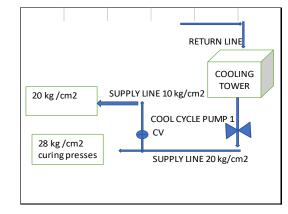
- Investment
- Saving In units
- Net savings in Rs
- ROI

- : 800 units/day : 17lacs /annum
- : 0.5 years

: 8 lacs

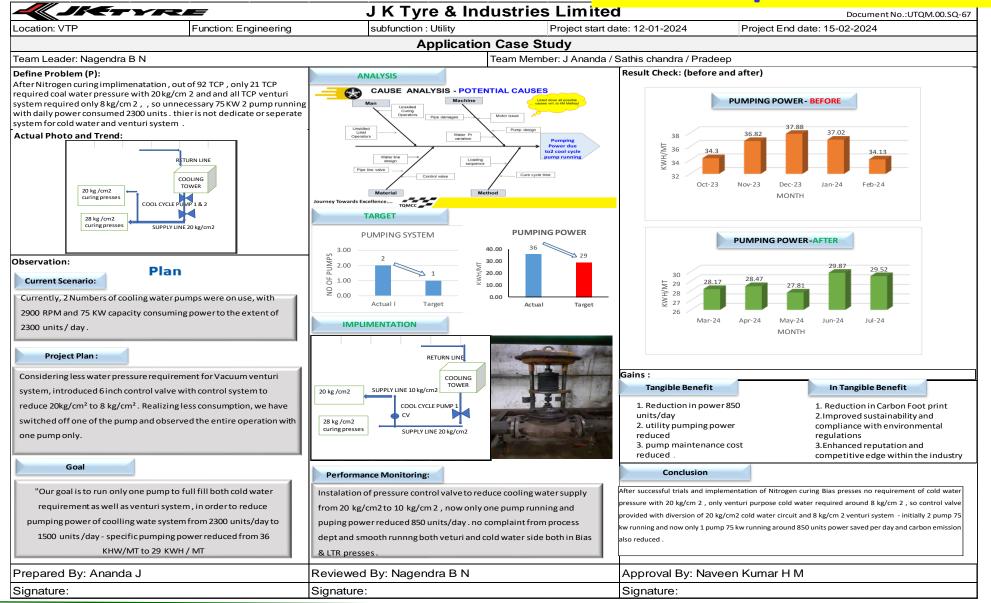
Standardization :


- SOP,FMEA & design documents
- Horizontal deployment


ROOT CAUSE IDENTIFICATION

Why # 1	Curing press cooling water pressure was 20 kg/cm2
Why # 2	Truck curing pressure venturi line CW pressure requirement was 10 kg/cm2
Why # 3	No dedicate system for venturi system
Why # 4	Installation of control valve to reduce CW pressure from 20 kg/cm2 to 10 kg/cm 2

AFTER



6.INNOVATIVE PROJECT IMPLEMENTED

4. Energy savings through Process Optimization

7. UTILIZATION OF RENEWABLE ENERGY SOURCES

Туре	Units	Annual Consumption	% of total power
Unit purchased from Renew Energy	Million KWh	86.25	93.3
Units generated from Roof Top Solar	Million KWh	0.75	0.8
Units generated from recovery Turbine	Million KWh	0.75	0.8
Unit purchased from CESCOM	Million KWh	2.81	3.0
Unit purchased from IEX	Million KWh	1.86	2.0
Total Power	Million KWh	92.42	100

95% of total power consumed is from Green Source in FY23-24

Minimum Rs 3.5 crore / Annum for next 10 years (starting from 2017) Budget allocated for RE power purchase

Carbon Sink

1000

4	Sr.	Location	No of Trees	No of Shrubs	Net Estimated Carbon Sink of JKTIL due to tree plantation (tCO2) from beginning to March 2022
	1	Kankroli Tyre Plant	84,570	338,584	12510.80
	2	Banmore Tyre Plant	133,586	37,434	11006.37
	3	Chennai Tyre Plant	15,287	6,999	2363.87
	4	Vikrant Tyre Plant	83,058	117,865	15848.43
	5	Cavendish Industries Ltd.	11,259	248,752	2510.71
		Total	327,760	749,634	44240.18

S 1/81

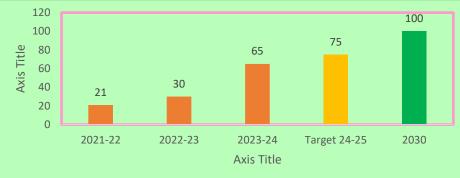
7a. UTILISATION OF WASTE MATERIAL AS FUEL

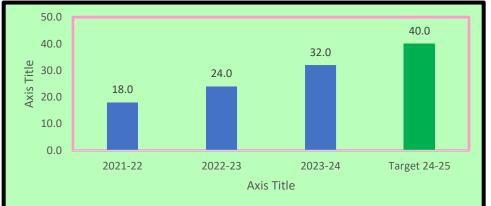
1) Use of Dry Leaves

- We do not generate industrial waste which can be used as fuel.
- Other waste such as Wood packing scrap material, trimmed branches, Dry leaves is sent for briquetting & re used in boiler as fuel.
- CO2 foot print reduced by around 53
 Ton / annum (by offsetting coal)

2) Re Use of Coal Dust

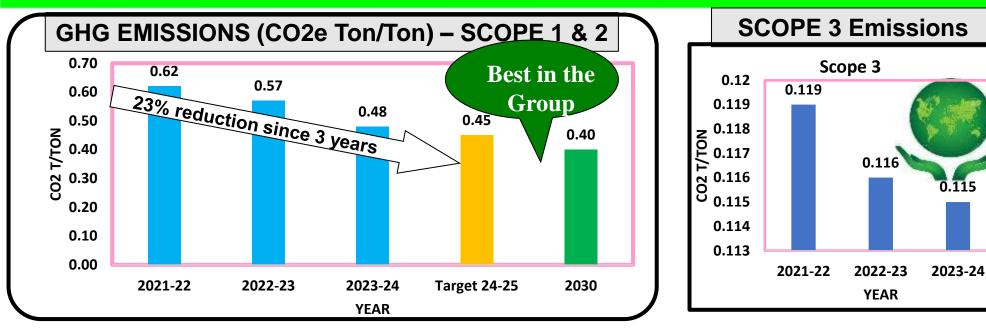
- Coal dust generation during coal crushing process/floor
 - sweeping , dust being wasted through fly loss
- Pallet making machine installed to convert the coal dust into pallet form and re-used at boiler




3) Use of Biomass

Biofuel utilization increased from 2.5% to 28% (daily 500 kgs pallets making using coal dust) Cost Savings of Rs. 14 lakhs /annuum

Total Coal savings from (1&2) (Tons / annum)



8. GHG INVENTORISATION

(ISO14064-1:2019)

TOTAL GHG EMISSIONS (CO2e Ton/Ton) – SCOPE 1,2 &3

	JK Tyre Including Cavedish	JKTIL (Excluding Cavendish)	KTP	СТР	VTP	BTP	Cavendish			
Emissio n	Emission Intensity (tCO2e/MT)	Emission Intensity (tCO2e/MT)	Emission Intensity (tCO2e/MT)	Emission Intensity (tCO2e/MT)	Emission Intensity (tCO2e/MT)	Emission Intensity (tCO2e/MT)	Emission Intensity (tCO2e/MT)			
2022-23	1.1257	0.9171	1.0038	0.7159	0.6867	1.1424	1.5523			
	VTP is Benchmark in JK Tyre									

Verification report & Opinion statement

bsi.	1000
Description of the second	
PA-lowh:+	50 Figure 10 Technicist 1 (1) arternation Technical - Deer State - Margo
And a state of the	div (B) 1
 The Southeast Back is designed as (2) The south a year (2) The south	produces to the odd of 200 of a mean draw draw on the draw of
	in the second second second

09. GREEN SUPPLY CHAIN

Green purchase guidelines

	TYRE
en e	INDUSTRIES LTD.
VTP/MTLS/Greenco & EnMS/01	Date: 10.07.2015
Dear Sir,	
Sub: Greenco and Energy Management S	Systems EnMS - 50001 certification
Environment / Energy is accorded the h	ir Vikrant Tyre Plant is in the journey of g Greenco & Energy Management System. highest priority by the top management and oring and improve environment / energy
	pect you to adopt clean / green technology t of our Green journey. As the product / jed by you are having significant impact on
Henceforth request to supply of produc guidelines / specification, particularly energy impact.	ots/services/technology exactly as per the related to products having environment/
We advise you to train your employees o to achieve energy performance in your co	n DO's and Dont's / operational guidelines mpany.
We also request to please suggest us a energy efficient / ecofriendly products / s	ways and means / alternatives for better services for our continuous improvement,
Please find enclosed hermith the own	y of our Energy Policy and our mission igned by our President & Director for your
We strongly advice all our suppliers to go scope 1 & 2) and LCA study for the produ	for carbon foot print verification (minimum icts/services supplied to us.
Please feel free to revert in case of any coordinator Mr. Vinay G.R (vir anilksharmai/jkmail.com) who will be gla	charification to our Environment / Energy avvirightp.(kmail.com) or undersigned at to respond you in the matter.
Thanking you,	
Yours truly	
For JK Tyre and Industries Ltd	
(AX mes	
A HOLE	
Anil Kumar Sharma General Manager – Commercial.	
Encl: Copy of Energy policy & Mission Sta	itement.
	·
Works : K.R.S. Road, Metagalli, Mysore - 570 016	I, India, Phone : (0821) 2581540, 3300111 Fax : (0821) 3086181
Regd Off. : Jaykaystam, P. O-Tyre Factory, Kanletsli- 31	1-110-002. Fex:91-11-23322058, Ph.:91-11-33001112, 33001122 13.342 (Rejestran), Fex: 02863-332018, Ph.:00352-302400/330011 VICRANT

Green Procurement Guide imes - VIP							
Raw Material	Non hazardous, eco friendly, Biodegradable, REECH compliance chemicals						
Appliances – AC, Fridges	Minimum 3 star						
Motors	Min IE 4						
Paints	Low VOC Paints						
Taps	Push Type						
Tube light & Bulbs	LED						
House Keeping cleaning agents	Eco friendly cleaning agents						

Groop Procurement Guide lines - VTP

All material code in SAP updated with Energy performance requirement.

- Taking measures in Energy management system by being proactive , innovative and cost effective including procurement of energy efficient products & services.
- As a Green Responsible company, we have re-sourced / re-organized / re-structured our suppliers close to our manufacturing plants. Suppliers in South cater to south plant & North to North plants

Eg. :- Carbon Black - Earlier supplied from Kolkata to VTP & Chennai supplied carbon black to KTP now the supplies reorganized so that Chennai supplies to VTP & CTP and Kolkata supplies to KTP, LTP & BTP. This resulted is overall savings in emission from supply chain

> INVOLVING SUPPLIERS IN CII GREENCO JOURNEY - We are encouraging our suppliers to go for GreenCo certification

10. EMS SYSTEM AND OTHER REQUIREMENTS

Existing monitoring system

ENERGY REVIEW

Daily shop floor review

Plant # 1&3 : At 11:30hrs – By Unit Head & Plant Head Plant # 2 : At 10:00 hrs - By Unit Head & Plant Head

Monthly review

Energy Performance review -by 1st week of Every Month (Unit Head) Energy review – 1st Week of every month by Mfg. Director Business Review Meeting (BRM) – 2nd Week of every month -President

- Annual Performance Review
 EnMS Management Review
 Meeting
- ✤ Annual Performance Review meeting at HO
- Benchmarking of Targets w.r.t industry standards Annually
 Review of targets is done based on high impact projects

ISO 50001:2018 CERTIFICATE

Certificate of Registration

ENERGY MANAGEMENT SYSTEM - 15O 50001:2018

This is to certify that:

3K Tyre & Industries Ltd. Vikaant Tyre Plant KPS Road Metogali Mysore 570 016 Kamataka Indus

Halds Certificate No.

ENMS 595612

and operates an Energy Management System which complex with the requirements of 750 58001;2008 for the following scope:

The Menufacture of Astornotive Bas, Radia & Of the Rasid Tyres, use of Electricity from State Electricity Board and From other Familyable accurat including EEX (Endian Energy Eachange), Generation of DG Power (as standby), Generation of Solar Power, Generation of power frough Recovery Tarbies, Concession of States Through Coel Find Boltes, Generation of Compressed Ast, Generation of Chilled Water for Process use.

For and on behalf of BS2:

thris Cheung, Head of Compliance & Rick - Asia Pacifi

Original Registration Date: 2013-04-29 Latest Revision Date: 2019-05-05

Effective Date: 2039-03-22 Expiry Date: 2022-03-23

Page: 5 of 2

...making excellence a habit'

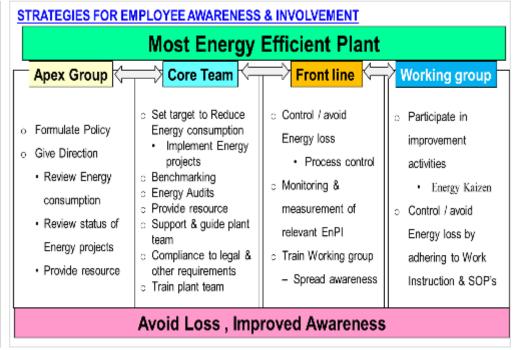
This contracts we include anticoncepts and exercise the property of 202 and is bound by the conditions of contract. An endotrain contracts we contract contract operations of Contracts and an endotract and an endotract. An endotract on the endotracted of were had a profile and Contract-sections on strandoms 202, 21, 2422-2020.

Critical capacity of the estimate of some hall proved as explorated by the maximum (iii) (i) (HC2-9000). Crysten interface mapping the same of the estimate of the estimated of the ESCOURD requirements may be estimated by essenting the segmentation. Projects/Estimate web Soft 7 provided capacity optime on to complete left.

Unbernsten med Gertract (SDL Histonial Court, Dary Avenue, Kourd HL, Hiller Human (HC) (HV) (SL + 44 (HC) (SC) (SO)) (HE) Assessment EC (2014), Applied also regional adder realistic PERECE at (HC) (South HI) Roug (Landor HI) Aug (A Secolar of Court HC) (South HC)

11. NET ZERO COMMITMENT

- > Phasing out coal fired boiler by modifying and upgrading existing Boiler,
- ➢ Utilization of 100% Biomass and CNG gas
- > 100% renewable energy by 2030 by Installing Solar Plant
- ➢ Reduction in Co2 emission to 50% by 2030
- Clean technology adaptation like Hot Nitrogen in curing process
- Carbon sequentialization by planting one million trees by 2030
- Increase use of Renewable material in Tyre

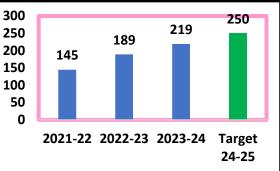


TEAM WORK, EMPLOYEE INVOLVEMENT & MONITORING

REVIEW MEETINGS - Daily shop floor review-Chaired by unit head & plant heads, Monthly review, Annual Performance Review, Energy review –chaired by Mfg. Director, Business review(BRM) - Chaired by President Benchmarking of Targets w.r.t industry standards, Review of targets is done based on high impact projects

n)	han high brinn Baser - Spinstine	Visatian -	Ser.	The Linguist law	better i ber			
1	and the second second						14	
	more manager internal							
	Anteripation (anterior) vicence po-	sing high spaning	F. Sector.	Contraction	the Distances	C. SPACE	HEATENS -	
	NER 17	~	· · · ·					
	an a name in the Bar (a) 2.1		-					
0.	er un este la protecto d'Alta	/	1					
	V		2					
				<u> </u>				
				<u>n</u>				
19.0	and is done to appropriate a	5.2008						
	0		1.1					
				1				
-	CATT	1 March	249.0	A March	676a-10	5 Plat 14	54Pin 15	THE
	PLAN CERTIFIC PROD (VI)	10832	10	1 201-05	387.65	362.83	\$2.8	134.0
	NAME CADREY SHOTS	806000	10	15.000	154200	145400	194800	40400
	PLANE 2/K	2.04	0.00	0.00	6331	6.312	63.9	6.36
	C		5-10-	62.55	1000	12.12	1800	10.2
	n selften.	10.007	55475	102.92	000	1027	4141	1100
	interpretation hos	9000	96.9	5768	1926	10698	- 998	- 8644
	COMPLET & JOER DELECT	188	31.7	32.0	2.50	262	2092	. 88
	ECITAD VESTICATION	scn .	14.08	MALE	596	10.00	1117	6880
	1947UHDDDDC2	200	35	7.53	SHE	385	2500	1414
	REAR AND	318	364	275	178.	1240	1394	1048
	BADE DUTIES IN OFF	H-R	385	1200	2.4	2.10	1440	7.30
	ON SCARSFOLDS IN 1975	GMT	4442	1.02	67/9	50%	306	24.64
	BORDE CHERCH	\$90	508	5865	500	879	- 5465	18
	DOBY PRESSURE		10.00	2/669	11082	17110	Max.	INE
				6.0	660	0.5	1005	11.50
	Daily Monitoring		6	19081	18006	UNS	11116	1500
			- 19	847.	UPW-	0.50	Km	EBI
			1	1001	IBCK	- GMX	1111	1243
	Sile		Tes	1943	1290	1275	1934	144
	ITAL COL		90	W/	PY .	196	964	539
	LOISE OT MAL	CER I	80.0	2867	MOT	pist.	1000	3996
	2006			10000	137400	Californi,		10048

- > On the job training is also being imparted to employees in regard to conservation of energy.
- > Employees have been identified for undergoing training in department where significant energy use .
- > Energy conservation tips are being displayed in the prominent places like utility, production hall etc
- Employee suggestions on conservation of energy. Suggestions are evaluated & implemented
- Employees in CFTs have made many Kaizens to conserve energy.



TEAM WORK, EMPLOYEE INVOLVEMENT & MONITORING

Energy Kaizens (Nos) Training on energy conservation (Hrs) × 100 × 100 × 0 50 Nos 2023-24 Target 24-2021-22 2022-23 2021-22 2022-23 2023-24 Target 24-25

Energy related suggestions (Nos)

	KAIZEN SHEET									
Productivity	Quality	Cost	Delivery	Safety	Morale	Energy	Environ- ment	JKTIL		
Kaizen Title: Red	Implemented Area: Banbury									
Problem/Present Status: Power contactor & Inching regulator problem in CSSR Tyre Building – M/c Before Improvement:							Implemented by: Mr. Hiremath Mr. Sandeep Mr. Mahesh			
			Ø	an	bra			(a) Qualita ≻ Mainte	IIt/Benefit: ative enance Fitter reduced n morale impr	0
Real Root Cause	Identification	n:		f mmprov	vement:			(b) Quantita		
	or & Power co	ntactor failed	T					 Reduction in consumption Reduction in 2.8 Ton / Ann eliminated fro month to Zero Productivity Average 960m Annual savianum 	by 5325 Kwh n CO2 emissi um Oil leaka om avg 2 ltrs o y improved b nin / month	on by ges / py
Initial Design :	No Drive to rea	duce the spe	ed				1	Standardizat Machine Dra		ed
Root cause: Free	quent Failure	of Regulato	or & contacto	r due to – Co	ontactor logic	system		How many p		
Idea to eliminate	e root cause:	Provide va	ariable frequ	ency drive				can be deplo –		ntally
Counter-measur contactor logic	e: Introduce	variable fre	quency drive	e instead of o	controlling th	e movement	by]	-na-	

AWARDS, ACKNOWLEDGEMENT

CEM AWARD OF EXCELLENCE IN ENERGY MANAGEMENT by CEM Canada

Single Use Plastic Free certified

State Export Excellence Award from Govt. Of Karnataka

CII National Award for Excellence in Energy Management 2023

GREENTECH AWARD- WINNER

CII National Award for Performance Excellence in RE sector

AWARDS, ACKNOWLEDGEMENT

EKDAM - Exceed Environment Gold Award

INDIAN ACHIEVERS AWARD

AWARDS, ACKNOWLEDGEMENT

Won Special Jury Award in ISQ TOPS convention 2023

FAME EXCELLENCE AWARD towards livelihood creation & 3R's-Platinum and Excellence in Environment protection -diamond

GREENTECH ENVIRONMENT AWARD WINNER 2022

VTP won the Greentech Environment Award 2022 under the Category of Environment Protection.

NATIONAL ENERGY CONSERVATION AWARD from BEE

FUTURE PLAN

GREENCO PLATINUM PLUS by 2024-25

Thank You

